Boundary regularized integral equation formulation of the Helmholtz equation in acoustics
نویسندگان
چکیده
A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals.
منابع مشابه
Solving the hypersingular boundary integral equation for the Burton and Miller formulation.
This paper presents an easy numerical implementation of the Burton and Miller (BM) formulation, where the hypersingular Helmholtz integral is regularized by identities from the associated Laplace equation and thus needing only the evaluation of weakly singular integrals. The Helmholtz equation and its normal derivative are combined directly with combinations at edge or corner collocation nodes ...
متن کاملNumerical Solution of Helmholtz Equation by Boundary Elements Method
Boundary elements method is well-suited for computational acoustics. The main profit it brings is reduction in number of unknowns compared to FEM. However, application of BEM to sound scattering problems has shown, that this advantage is lost in case of high frequency waves. High frequencies require larger number of elements which contradicts the initial purpose of using BEM in solvers and may ...
متن کاملA Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملA Fast Regularized Boundary Integral Method for Practical Acoustic Problems
To predict the sound field in an acoustic problem, the well-known non-uniqueness problem has to be solved. In a departure from the common approaches used in the prior literature, the weak-form of the Helmholtz differential equation, in conjunction with vector test-functions, is utilized as the basis, in order to directly derive non-hyper-singular boundary integral equations for the velocity pot...
متن کاملBoundary Integral Methods in Low Frequency Acoustics
Abstract This expository paper is concerned with the direct integral formulations for boundary value problems of the Helmholtz equation. We discuss unique solvability for the corresponding boundary integral equations and its relations to the interior eigenvalue value problems of the Laplacian. Based on the integral representations, we study the asymptotic behaviors of the solutions to the bound...
متن کامل